Perfect matchings a.e. and generically

Matt Bowen

McGill University

November 15, 2022

Based on joint work with Kun and Sabok and Poulin and Zomback

Every d-regular bipartite graph has a perfect matching.

Every d-regular bipartite graph has a perfect matching.

A fractional perfect matching is a function σ : E(G) → [0,1] such that ∑_{v∈e} σ(e) = 1 for all v ∈ V(G).

Every d-regular bipartite graph has a perfect matching.

- A fractional perfect matching is a function σ : E(G) → [0,1] such that ∑_{v∈e} σ(e) = 1 for all v ∈ V(G).
- $\sigma = \frac{1}{d}$ is a fractional perfect matching.
- Let $F(\sigma) = \sigma^{-1}(0, 1)$.
- $F(\sigma)$ has no leaves.
- We can always fix one edge on a cycle

Every d-regular bipartite graph has a perfect matching.

- A fractional perfect matching is a function σ : E(G) → [0,1] such that ∑_{v∈e} σ(e) = 1 for all v ∈ V(G).
- $\sigma = \frac{1}{d}$ is a fractional perfect matching.
- Let $F(\sigma) = \sigma^{-1}(0, 1)$.
- F(σ) has no leaves.
- We can always *fix* one edge on a cycle

Can we find definable analogs of the above theorem?

Counterexamples

- Irrational rotation graph has no Borel pm a.e./generically.
- (Conley, Jackson, Marks, Seward, Tucker-Drob) There are acyclic d-regular Borel graphs with no Borel p.m. for any d ≥ 2.
- (Kun) There are *d*-regular acyclic pmp Borel graphs with no Borel pm a.e. for all *d* ≥ 2.

One-ended graphs

A connected graph is **one-ended** if for every finite $F \subset V(G)$, G - F has exactly one infinite connected component.

One-ended graphs

A connected graph is **one-ended** if for every finite $F \subset V(G)$, G - F has exactly one infinite connected component.

A Borel graph is **one-ended** if each of its connected components is.

One-ended graphs

A connected graph is **one-ended** if for every finite $F \subset V(G)$, G - F has exactly one infinite connected component.

A Borel graph is **one-ended** if each of its connected components is.

Theorem (B., Kun, Sabok)

Every d-regular hyperfinite one-ended bipartite pmp Borel graph has a Borel pm a.e.

Theorem (B., Poulin, Zomback)

Every d-regular one-ended bipartite Borel graph has a Borel pm generically.

Definition

A borel family of sets $\mathcal{T} \subset V(G)^{<\infty}$ is a **toast** if it satisfies properties (1) and (2) of the below definition, and it is a **connected toast** if it also satisfies property 3:

$$\bigcirc \bigcup_{K\in\mathcal{T}} E(K) = E(G),$$

for every pair K, L ∈ T either (N(K) ∪ K) ∩ L = Ø or K ∪ N(K) ⊆ L, or L ∪ N(L) ⊆ K,

● for every $K \in \mathcal{T}$ the induced subgraph on $K \setminus \bigcup_{K \supset L \in \mathcal{T}} L$ is connected.

Definition

A borel family of sets $\mathcal{T} \subset V(G)^{<\infty}$ is a **toast** if it satisfies properties (1) and (2) of the below definition, and it is a **connected toast** if it also satisfies property 3:

$$\bigcirc \bigcup_{K\in\mathcal{T}} E(K) = E(G),$$

for every pair K, L ∈ T either (N(K) ∪ K) ∩ L = Ø or K ∪ N(K) ⊆ L, or L ∪ N(L) ⊆ K,

③ for every $K \in T$ the induced subgraph on $K \setminus \bigcup_{K \supseteq L \in T} L$ is connected.

Theorem (B., Kun, Sabok)

Every one-ended hyperfinite Borel graph admits a connected toast a.e.

Theorem (B., Poulin, Zomback)

Every one-ended Borel graph admits a connected toast generically.

PM generically

Theorem (BPZ)

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

PM generically

Theorem (BPZ)

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

Let \mathcal{T} be a connected toast. For every $L \in \mathcal{T}_1$ there is an $m \in \omega$, an $L \subset K \in \mathcal{T}_{\leq m}$, and a fractional matching σ' such that

- $\sigma'(e) \in \{0,1\}$ for all $e \in E(L)$.
- **2** $\sigma'(e) = \sigma(e)$ for all $e \notin E(K)$.

Lemma

Given a measurable fpm σ , we can find a measurable σ' with $\sigma'(e) \in \{0, \frac{1}{2}, 1\}$ and no cycles.

In fact, any extreme point in the space of measurable fpm has this property.

Lemma

Given a measurable fpm σ , we can find a measurable σ' with $\sigma'(e) \in \{0, \frac{1}{2}, 1\}$ and no cycles.

In fact, any extreme point in the space of measurable fpm has this property.

Let R be the set of such matchings and given $\sigma \in R$ let $L(\sigma) = \sigma^{-1}(\frac{1}{2})$.

Improving matchings

Our stratefy: Given $\sigma \in R$, find a $\sigma' \in R$ with $L(\sigma') < L(\sigma)$.

Improving matchings

Our stratefy: Given $\sigma \in R$, find a $\sigma' \in R$ with $L(\sigma') < L(\sigma)$. It suffices to find σ' with

$$\int_{e \in E(G) \setminus L(\sigma)} |\sigma'(e) - \sigma(e)| < \frac{1}{2} \int_{e \in L(\sigma)} |\sigma'(e) - \sigma(e)|.$$

Improving matchings

Our stratefy: Given $\sigma \in R$, find a $\sigma' \in R$ with $L(\sigma') < L(\sigma)$.

It suffices to find σ' with

$$\int_{e \in E(G) \setminus L(\sigma)} |\sigma'(e) - \sigma(e)| < \frac{1}{2} \int_{e \in L(\sigma)} |\sigma'(e) - \sigma(e)|.$$

Proof.

We can assume $\sigma' \in R$ by the Choquet–Bishop–de Leeuw theorem and convexity.

Let
$$A = \{e \in E(G) \setminus L(\sigma) : \sigma'(e) \neq \sigma(e)\}$$
 and
 $B = \{e \in L(\sigma) : \sigma'(e) \neq \sigma(e)\}.$
We know $L(\sigma') \setminus L(\sigma) \subseteq A$ and $B = L(\sigma) \setminus L(\sigma').$
Also,
 $\mu(A) \leq 2 \int_{E(G) \setminus L(\sigma)} |\sigma' - \sigma|$ and $\mu(B) = 2 \int_{L(\chi)} |\sigma' - \frac{1}{2}| = 2 \int_{L(\sigma)} |\sigma' - \sigma|.$
Putting this together gives what we want.

Improving a matching

Let k be large and $\lambda > \varepsilon > 0$ depending on k be tiny. Using a toast find k Borel families of cycles C_1, \ldots, C_k each consisting of pairwise edge-disjoint cycles such that

• every edge not in L is covered by at most one cycle of $\bigcup_{i=1}^{k} C_i$,

 $\ 2 \ \mu(\bigcap_{i=1}^k E(\bigcup C_i) \cap E(L)) > \frac{1}{2}\mu(L),$

Improving a matching

Let k be large and $\lambda > \varepsilon > 0$ depending on k be tiny. Using a toast find k Borel families of cycles C_1, \ldots, C_k each consisting of pairwise edge-disjoint cycles such that

• every edge not in L is covered by at most one cycle of $\bigcup_{i=1}^{k} C_i$,

Given this, let $\chi = \frac{\lambda}{d} + (1 - \lambda \sigma)$.

Flip a coin to decide if we'll add or subtract ε alternating around each cycle in χ and let the result be σ' .

Improving a matching

Let k be large and $\lambda > \varepsilon > 0$ depending on k be tiny. Using a toast find k Borel families of cycles C_1, \ldots, C_k each consisting of pairwise edge-disjoint cycles such that

• every edge not in L is covered by at most one cycle of $\bigcup_{i=1}^{k} C_i$,

Given this, let $\chi = \frac{\lambda}{d} + (1 - \lambda \sigma)$.

Flip a coin to decide if we'll add or subtract ε alternating around each cycle in χ and let the result be σ' .

Then
$$|\sigma'(e) - \sigma(e)| < \lambda + \varepsilon$$
 for $e \notin L(\sigma)$
and

 $\mathbb{E}|\sigma' - \sigma| = \Omega(\varepsilon \sqrt{k})$ for $e \in \bigcap_{i=1}^{k} E(\bigcup C_i)$ by Stirling's approximation.

Problems

- Does every one-ended bipartite Borel graph satisfy $\chi'_{BM} \leq \Delta(G)$?
- Does every bipartite *d*-regular Borel graph that admits a connected toast have a Borel perfect matching?