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Classical results

Theorem (Kőnig)

Every d-regular bipartite graph has a perfect matching.

A fractional perfect matching is a function σ : E (G ) → [0, 1] such
that

∑
v∈e σ(e) = 1 for all v ∈ V (G ).

σ = 1
d is a fractional perfect matching.

Let F (σ) = σ−1(0, 1).

F (σ) has no leaves.

We can always fix one edge on a cycle

Can we find definable analogs of the above theorem?
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Counterexamples

Irrational rotation graph has no Borel pm a.e./generically.

(Conley, Jackson, Marks, Seward, Tucker-Drob) There are acyclic
d-regular Borel graphs with no Borel p.m. for any d ≥ 2.

(Kun) There are d-regular acyclic pmp Borel graphs with no Borel pm
a.e. for all d ≥ 2.
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One-ended graphs

A connected graph is one-ended if for every finite F ⊂ V (G ), G − F has
exactly one infinite connected component.

A Borel graph is one-ended if each of its connected components is.

Theorem (B., Kun, Sabok)

Every d-regular hyperfinite one-ended bipartite pmp Borel graph has a
Borel pm a.e.

Theorem (B., Poulin, Zomback)

Every d-regular one-ended bipartite Borel graph has a Borel pm generically.
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toasts

Definition

A borel family of sets T ⊂ V (G )<∞ is a toast if it satisfies properties (1)
and (2) of the below definition, and it is a connected toast if it also
satisfies property 3:

1
⋃

K∈T E (K ) = E (G ),

2 for every pair K , L ∈ T either (N(K ) ∪ K ) ∩ L = ∅ or K ∪ N(K ) ⊆ L,
or L ∪ N(L) ⊆ K ,

3 for every K ∈ T the induced subgraph on K \
⋃

K⊋L∈T L is connected.

Theorem (B., Kun, Sabok)

Every one-ended hyperfinite Borel graph admits a connected toast a.e.

Theorem (B., Poulin, Zomback)

Every one-ended Borel graph admits a connected toast generically.
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PM generically

Theorem (BPZ)

Any one-ended bipartite d-regular Borel graph admits a Borel perfect
matching generically.

Let T be a connected toast. For every L ∈ T1 there is an m ∈ ω, an
L ⊂ K ∈ T<m, and a fractional matching σ′ such that

1 σ′(e) ∈ {0, 1} for all e ∈ E (L).

2 σ′(e) = σ(e) for all e /∈ E (K ).
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PM a.e.

Lemma

Given a measurable fpm σ, we can find a measurable σ′ with
σ′(e) ∈ {0, 12 , 1} and no cycles.

In fact, any extreme point in the space of measurable fpm has this
property.

Let R be the set of such matchings and given σ ∈ R let L(σ) = σ−1(12).
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Improving matchings

Our stratefy: Given σ ∈ R, find a σ′ ∈ R with L(σ′) < L(σ).

It suffices to find σ′ with∫
e∈E(G)\L(σ)

|σ′(e)− σ(e)| < 1

2

∫
e∈L(σ)

|σ′(e)− σ(e)|.

Proof.

We can assume σ′ ∈ R by the Choquet–Bishop–de Leeuw theorem and
convexity.
Let A = {e ∈ E (G ) \ L(σ) : σ′(e) ̸= σ(e)} and
B = {e ∈ L(σ) : σ′(e) ̸= σ(e)}.
We know L(σ′) \ L(σ) ⊆ A and B = L(σ) \ L(σ′).
Also,
µ(A) ≤ 2

∫
E(G)\L(σ) |σ

′ − σ| and µ(B) = 2
∫
L(χ) |σ

′ − 1
2 | = 2

∫
L(σ) |σ

′ − σ|.
Putting this together gives what we want.
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Improving a matching

Let k be large and λ > ε > 0 depending on k be tiny. Using a toast find k
Borel families of cycles C1, . . . , Ck each consisting of pairwise edge-disjoint
cycles such that

1 every edge not in L is covered by at most one cycle of
⋃k

i=1 Ci ,

2 µ(
⋂k

i=1 E (
⋃

Ci ) ∩ E (L)) > 1
2µ(L),

Given this, let χ = λ
d + (1− λσ).

Flip a coin to decide if we’ll add or subtract ε alternating around each
cycle in χ and let the result be σ′.

Then |σ′(e)− σ(e)| < λ+ ε for e /∈ L(σ)

and

E|σ′ − σ| = Ω(ε
√
k) for e ∈

⋂k
i=1 E (

⋃
Ci ) by Stirling’s approximation.
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Problems

Does every one-ended bipartite Borel graph satisfy χ′
BM ≤ ∆(G )?

Does every bipartite d-regular Borel graph that admits a connected
toast have a Borel perfect matching?
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